Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171051, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382616

RESUMO

Glyphosate (Gly) is a massively utilized toxic herbicide exceeding its statutory restrictions, causing adverse environmental and health impacts. Engineered nanomaterials, even though are integral to remediate Gly, their practical use is limited due to time and energy driven purifications, and negative environmental impacts. Here, a 3D wide area (~1.6 ± 0.4 cm2) Cu2O nanoparticle supported biotemplate is designed using fish-scale wastes as a sustainable approach for the ultra-efficient and selective hand-remediation of Gly from real-time samples from agro-farms. While the innate metal binding and reducing ability of collagenous scales aided self-synthesis cum grafting of Cu2O, the selective binding potential of Cu2O to Gly facilitated its hand-retrieval; as assessed using optical characterizations, Fourier transform infrared spectroscopy, thermogravimetric analysis and liquid chromatography mass spectrometry. Optimization studies revealed extractions of diverse pay-loads of Gly between 0.1 µg/mL to 40 µg/mL per 80 mg biotemplate grafted with ~6.354 µg of sub-5 nm Cu2O and was exponential to the number of Cu2O@biotemplates. Even though pH and surfactant didn't have any impact on the adsorption of Gly to the Cu2O@biotemplates, increase in the ionic strength led to a drastic increase in the adsorption. Density function theory simulations unveiled the involvement of phosphonic and carboxylic groups of Gly for interaction with Cu2O with a bond length of 1.826 Å and 1.833 Å, respectively. Overall, our sustainably generated, cost-efficient, hand-retrievable Cu2O supported biotemplate can be generalized to extract diverse organophosphorus toxins from agro-farms and other sewage embodiments. SYNOPSIS: Glyphosate is an excessively applied herbicide with potent health hazards and carcinogenicity. Thus, a hand removable Cu2O-supported biotemplate to selectively and efficiently remediate glyphosate from irrigation water is developed.


Assuntos
60658 , Herbicidas , Animais , Herbicidas/química , Água , Tensoativos , Bioengenharia
2.
J Phys Chem A ; 127(4): 886-893, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653147

RESUMO

A comparative new strategy to enhance thermally activated delayed fluorescence (TADF) of through-space charge transfer (CT) molecules in organic light-emitting diodes (OLEDs) is investigated. Generally, TADF molecules adopt a twisted donor and acceptor structure to get a sufficiently small ΔEST and a higher value of the spin-orbit coupling matrix element (SOCME). However, molecules containing donor-phenyl bridge-acceptor (D-p-A) units and featuring π-stacked architectures have intramolecular CT contribution through space and exhibit high TADF efficiency. We have explored the insights into the TADF mechanism in D-p-A molecules using the density functional theory (DFT) and time-dependent DFT methods. The calculated optical absorption and ΔEST values are found to be in good agreement with available experimental data. Interestingly, we found the origin of the SOCME to be the twisted orientation of the donor and bridge moieties. Also, we predicted similar molecules with enhanced OLED efficiency with different substitutions.

3.
Sci Rep ; 12(1): 15043, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057668

RESUMO

We have designed a series of new conjugated donor-acceptor-based macrocyclic molecules using state-of-the-art computational methods. An alternating array of donors and acceptor moieties in these macrocycle molecules are considered to tune the electronic and optical properties. The geometrical, electronic, and optical properties of newly designed macrocyclic molecules are fully explored using various DFT methods. Five conjugated macrocycles of different sizes are designed considering various donor and acceptor units. The selected donor and acceptors, viz., thiophene (PT), benzodithiophene (BDT), dithienobenzodithiophene (DTBDT), diketopyrrolopyrrole (DPP), and benzothiazole (BT), are frequently found in high performing conjugated polymer for different organic electronic applications. To fully assess the potential of these designed macrocyclic derivatives, analyses of frontier molecular orbital energies, excited state energies, energy difference between singlet-triplet states, exciton binding energies, rate constants related to charge transfer at the donor-acceptor interfaces, and electron mobilities have been carried out. We found significant structural and electronic properties changes between cyclic compounds and their linear counterparts. Overall, the cyclic conjugated D-A macrocycles' promising electronic and optical properties suggest that these molecules can be used to replace linear polymer molecules with cyclic conjugated oligomers.

4.
RSC Adv ; 12(27): 17585-17595, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765449

RESUMO

Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.

5.
Org Lett ; 24(24): 4310-4315, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35696547

RESUMO

Herein, we report a copper/amine catalyzed stereoselective addition of alkynes to ketenimine intermediates generated in situ from the sulfonyl azide-alkyne cycloaddition cascade for the stereoselective synthesis of (Z)-1,3-enynes. Significantly, for the first-time, enamine intermediates generated in the copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions have been successfully trapped and isolated as the products. Density functional theory computations have also been performed and found to be consistent with the observed experimental stereoselectivity.

6.
J Phys Chem A ; 124(17): 3364-3373, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32255630

RESUMO

The investigation of proton localization at a hydrophobic-hydrophilic interface is an important problem in chemical and materials sciences. In this study, protonated benzene (i.e., benzenium ion) and water clusters [BZH+Wn (where n = 1-6)] are selected as prototype models to understand the interfacial interactions and proton transfer mechanism between a carbonaceous surface and water molecules. The excess protons can localize in the vicinity of the hydrophobic-hydrophilic interface, and these clusters are stabilized by various kinds of noncovalent interactions. Calculations are carried out using ab initio (MP2) and density functional theory B3LYP methods to shed more light on geometries, energetics, and spectral signatures of the protonated species [H+(H2O)n] at the interfaces. These calculations revealed few low-lying isomers, which have not been reported earlier. Scrutiny of the results reveals that proton localization in the hydrophilic environment is more stable than the hydrophobic benzene π-cloud. Furthermore, the occurrence of an O-H+···π hydrogen bond significantly influences the O-H+···O interactions in the water clusters and also intensively affects the vibrational modes of the Eigen cation. Thus, the aromatic π-clouds can stabilize the Eigen cation and at the same time, a twisted form of Eigen (one O-H+···π → two O-H+···π) can enhance the proton transfer through the water chain via a Grotthuss-type mechanism. The vibrational spectra of these clusters reveal that there is a large red-shifted frequency for the O-H+···O, O-H+···π, and O-H···π modes of interaction. The energetic values and vibrational frequencies obtained from the B3LYP method are in close agreement with the MP2 level and experimental values, respectively.

7.
Org Lett ; 21(7): 2025-2028, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30860389

RESUMO

The first manganese-catalyzed cyclopropanation of indoles is reported in moderate to excellent yield with methyl-2-diazo-2-arylacetates. This new strategy involved acetyl (COCH3) as the directing group and exhibited exceptional functional group tolerance. In the absence of stereodirecting groups the desired products were obtained as a mixture of diastereomers (7:3 → 8:2). Control experiments and DFT studies elucidated the probable pathway for the formation of cyclopropane-fused indole product. Deacetylation of the final products afforded both C3-substituted NH-indoles.

8.
J Org Chem ; 84(3): 1176-1184, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606007

RESUMO

Highly efficient oxidative annulation of alkynes furnished diversely substituted pyran[2,3,4- de]chromene-2-one derivatives and related polycycles in moderate to high yield. The reaction is catalyzed by nontoxic, air-stable, and inexpensive Cp*Co(CO)I2 catalyst. The hydroxyl moiety at the substrate acts as the directing group for the C-H bond activation.

9.
Chempluschem ; 84(9): 1257-1262, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944034

RESUMO

A new family of azaacenes has been designed and synthesized by incorporating the electron-withdrawing sp2 -hybridized nitrogen of pyrazine and electron-donating nitrogen of carbazole in a molecular skeleton. Two different conjugated lengths of 8-ring aza-nonacene and 10-ring aza-undecene have been achieved by an efficient condensation reaction. The unique optoelectronic properties of these molecules were investigated using both experimental and theoretical techniques. The azaacenes show visible-region absorption and near-infrared (NIR) fluorescence. These compounds can serve as hole-transport semiconductors for solution-processed organic field-effect transistors (OFETs). Single-crystal transistor devices of one of the aza-nonacenes exhibit hole charge transport behavior with a hole mobility of 0.07 cm2 /Vs and an on/off current ratio of 1.3x106 .

10.
Chem Commun (Camb) ; 54(79): 11152-11155, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226223

RESUMO

A well-defined series of long and soluble isoindigo thienoacene oligomers have been synthesized from a novel electron deficient building block: benzo[1,2-b:4,5-b']bis[b]benzothiophene bislactams. Extension of the π-conjugated systems facilitates control of the optical, electronic and device characteristics.

11.
J Mol Model ; 24(9): 258, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30159795

RESUMO

The structure and stability of various ternary complexes in which an extended aromatic system such as coronene interacts with ions/atoms/molecules on opposite faces of the π-electron cloud were investigated using ab initio calculations. By characterizing the nature of the intermolecular interactions using an energy decomposition analysis, it was shown that there is an interplay between various types of interactions and that there are co-operativity effects, particularly when different types of interactions coexist in the same system. Graphical abstract Weak OH-π, π-π and van der Waals-π ternary systems are stabilized through dispersion interactions. Cation-π ternary systems are stabilized by through-space electrostatic interactions.

12.
Org Lett ; 20(11): 3241-3244, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29757655

RESUMO

The first intermolecular ring-expansion cascade of azirines with alkynes for the synthesis of pyridines, enabled by a copper/triethylamine catalytic system via simultaneous generation and utilization of yne-enamine and skipped-yne-imine intermediates, is reported. Experimental as well as computational mechanistic studies revealed that the role of triethylamine is crucial in deciding the reaction pathway toward the pyridine products. This process offers a novel, one-step, direct, and practical strategy for the rapid construction of highly substituted pyridines under exceedingly mild conditions, and an installed alkyne functionality.

13.
Nat Commun ; 9(1): 416, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379022

RESUMO

Conventional semiconducting polymer synthesis typically involves transition metal-mediated coupling reactions that link aromatic units with single bonds along the backbone. Rotation around these bonds contributes to conformational and energetic disorder and therefore potentially limits charge delocalisation, whereas the use of transition metals presents difficulties for sustainability and application in biological environments. Here we show that a simple aldol condensation reaction can prepare polymers where double bonds lock-in a rigid backbone conformation, thus eliminating free rotation along the conjugated backbone. This polymerisation route requires neither organometallic monomers nor transition metal catalysts and offers a reliable design strategy to facilitate delocalisation of frontier molecular orbitals, elimination of energetic disorder arising from rotational torsion and allowing closer interchain electronic coupling. These characteristics are desirable for high charge carrier mobilities. Our polymers with a high electron affinity display long wavelength NIR absorption with air stable electron transport in solution processed organic thin film transistors.

14.
J Phys Chem Lett ; 8(20): 5171-5176, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28968105

RESUMO

We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

15.
Nat Mater ; 16(3): 356-362, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941806

RESUMO

Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

16.
ACS Nano ; 10(12): 10736-10744, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27809478

RESUMO

Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

17.
Adv Mater ; 28(37): 8197-8205, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27411743

RESUMO

Taking the π-conjugated polymers PBDT[2X]T (X = H, F) as model systems, the effects of fluorine substitution on main-chain conformations, packing, and electronic couplings are examined. This combination of molecular dynamics simulations and solid-state NMR shows that a higher propensity for backbone planarity in PBDT[2F]T leads to more pronounced, yet staggered, chain stacking, which generally leads to higher electronic couplings and binding energy between neighboring chains.

18.
J Chem Theory Comput ; 12(6): 2906-16, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27183355

RESUMO

We propose a new methodology for the first-principles description of the electronic properties relevant for charge transport in organic molecular crystals. This methodology, which is based on the combination of a nonempirical, optimally tuned range-separated hybrid functional with the polarizable continuum model, is applied to a series of eight representative molecular semiconductor crystals. We show that it provides ionization energies, electron affinities, and transport gaps in very good agreement with experimental values, as well as with the results of many-body perturbation theory within the GW approximation at a fraction of the computational costs. Hence, this approach represents an easily applicable and computationally efficient tool to estimate the gas-to-crystal phase shifts of the frontier-orbital quasiparticle energies in organic electronic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...